domingo, 5 de junio de 2016

RELATIVIDAD

La teoría de la relatividad está compuesta a grandes rasgos por dos grandes teorías (la de la relatividad especial y la de la relatividad general) formuladas por Albert Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica newtoniana y el electromagnetismo.


 La primera teoría, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias, en el que se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero coincide numéricamente con ella en campos gravitatorios débiles. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.
 No fue hasta el 7 de marzo de 2010 cuando fueron mostrados públicamente los manuscritos originales de Einstein por parte de la Academia Israelí de Ciencias, aunque la teoría se había publicado en 1905. El manuscrito tiene 46 páginas de textos y fórmulas matemáticas redactadas a mano, y fue donado por Einstein a la Universidad Hebrea de Jerusalén en 1925 con motivo de su
 
>>RELATIVIDAD ESPECIAL

La teoría de la relatividad especial, también llamada teoría de la relatividad restringida, publicada por Albert Einstein en 1905, describe la física del movimiento en el marco de un espacio-tiempo plano, describe correctamente el movimiento de los cuerpos incluso a grandes velocidades y sus interacciones electromagnéticas y se usa básicamente para estudiar sistemas de referencia inerciales. Estos conceptos fueron presentados anteriormente por Poincaré y Lorentz, que son considerados como originadores de la teoría. Si bien la teoría resolvía un buen número de problemas del electromagnetismo y daba una explicación del experimento de Michelson-Morley, esta teoría no proporciona una descripción relativista del campo gravitatorio.
 Tras la publicación del artículo de Einstein, la nueva teoría de la relatividad especial fue aceptada en unos pocos años por la práctica totalidad de los físicos y los matemáticos, de hecho personas como Poincaré o Lorentz habían estado muy cerca de llegar al mismo resultado que Einstein. La forma geométrica definitiva de la teoría se debe a Hermann Minkowski, antiguo profesor de Einstein en la Politécnica de Zürich; acuñó el término "espacio-tiempo" (Raumzeit) y le dio la forma matemática adecuada.4 El espacio-tiempo de Minkowski es una variedad tetradimensional en la que se entrelazaban de una manera insoluble las tres dimensiones espaciales y el tiempo. En este espacio-tiempo de Minkowski, el movimiento de una partícula se representa mediante su línea de universo (Weltlinie), una curva cuyos puntos vienen determinados por cuatro variables distintas: las tres dimensiones espaciales (,,) y el tiempo (). El nuevo esquema de Minkowski obligó a reinterpretar los conceptos de la métrica existentes hasta entonces. El concepto tridimensional de punto fue sustituido por el de evento. La magnitud de distancia se reemplaza por la magnitud de intervalo.
 
 >>RELATIVIDAD GENERAL

La relatividad general fue publicada por Einstein en 1915, y fue presentada como conferencia en la Academia de Ciencias Prusiana el 25 de noviembre. La teoría generaliza el principio de relatividad de Einstein para un observador arbitrario. Esto implica que las ecuaciones de la teoría deben tener una forma de covariancia más general que la covariancia de Lorentz usada en la teoría de la relatividad especial. Además de esto, la teoría de la relatividad general propone que la propia geometría del espacio-tiempo se ve afectada por la presencia de materia, de lo cual resulta una teoría relativista del campo gravitatorio. De hecho la teoría de la relatividad general predice que el espacio-tiempo no será plano en presencia de materia y que la curvatura del espacio-tiempo será percibida como un campo gravitatorio.
 Debe notarse que el matemático alemán David Hilbert escribió e hizo públicas las ecuaciones de la covarianza antes que Einstein. Ello resultó en no pocas acusaciones de plagio contra Einstein, pero probablemente sea más, porque es una teoría (o perspectiva) geométrica. La misma postula que la presencia de masa o energía «curva» al espacio-tiempo, y esta curvatura afecta la trayectoria de los cuerpos móviles e incluso la trayectoria de la luz.
 Einstein expresó el propósito de la teoría de la relatividad general para aplicar plenamente el programa de Ernst Mach de la relativización de todos los efectos de inercia, incluso añadiendo la llamada constante cosmológica a sus ecuaciones de campo5 para este propósito. Este punto de contacto real de la influencia de Ernst Mach fue claramente identificado en 1918, cuando Einstein distingue lo que él bautizó como el principio de Mach (los efectos inerciales se derivan de la interacción de los cuerpos) del principio de la relatividad general, que se interpreta ahora como el principio de covarianza general.


problemas resueltos***




!..¡Cuál ha de ser la velocidad relativa de dos observadores inerciales para que sus medidas de intervalos de tiempo difieran en 1% ? 
  V=0.99995


2::Dos naves espaciales se aproximan desde posiciones opuestas en un sistema inercial. Si la velocidad de cada una de ellas es de 0,9 c, calcule la velocidad relativa entre las naves.
El enunciado del problema permite construir el siguiente esquema descriptivo:
 
Para hallar la velocidad relativa entre ambas naves debemos pasar a un sistema fijo en una de ellas y calcular la velocidad de la otra nave en ese sistema de referencia.
Cambiando a un sistema fijo en la nave1 (V=0.9c), tenemos
 
El cálculo de v’2 dará directamente la velocidad relativa entre las naves
 
 

 
3...Sea un tren que camina a una velocidad V con respecto a la Tierra. Sobre los extremos del tren caen rayos que dejan marcas P’ y Q’ sobre él, y P y Q sobre la Tierra. Un observador O que esté sobre la Tierra a mitad de camino entre P y Q ve caer los rayos en forma simultánea. Indicar si ocurrirá o no lo propio para un observador O’ situado en el punto medio del tren (ejemplo propuesto por Einstein).

Solución:

Lo primero que hay que hacer es fijar los sistemas de referencia. Arbitrariamente indicamos como fijo al del observador en la Tierra.
Como para este observador (O) el tren está en movimiento, su longitud está contraída
 
 
La longitud del tren para O será: 




 



Para O los rayos caen simultáneamente, es decir t1= t2 , y están separados por la distancia l(longitud contraída del tren).
Para O’ los rayos no caen simultáneamente.
La diferencia de tiempo debemos calcularla con las Transformaciones de Lorentz, cumpliéndose:
 
 
 
 
 
 Observando que la diferencia de tiempo es negativa se deduce que el primer rayo cae en el punto Q.
La distancia que separa los rayos es la de la longitud del tren
 
 
 PREDECIBILIDAD
 

Predicción tiene por etimología el latín pre+dicere, esto es, “decir antes”. Una vez
Sabido el significado general, conviene irlo afinando para ajustarlo a los usos que la
práctica demanda. Por ello, no se trata sólo de “decir antes”, sino de “decirlo bien”, o
sea, acertar; también, hacerlo con un plazo suficiente para poder tomar las medidas que
se crean oportunas, y además tener una idea de hasta cuándo es posible predecir el
futuro con cierto éxito.
Cuando se efectúa una predicción, se está estimando un valor futuro de alguna variable
que se considere representativa de una cierta situación. Por ejemplo, en cuestiones
climáticas podría tratarse de temperaturas medias de la atmósfera en determinados
niveles, concentraciones de gases, precipitación, etc. También se pueden hacer
predicciones espaciales, como la ubicación, movilidad e intensidad local de fenómenos
extremos, caso por ejemplo de los huracanes y tormentas tropicales (Fernández &
Pacheco 2000, Pacheco & Hayek 1997). Normalmente ambos tipos de predicción están
ligados y se realizan a la vez, como lo prueban los productos que ofrecen las grandes
agencias e institutos de Meteorología y Climatología.
Las estimaciones realizadas para predecir se denominan predictores. Pueden construirse
de modos muy diversos, de algunos de los cuales nos ocuparemos en este trabajo, y su
bondad se mide -como es natural- por el porcentaje de aciertos en situaciones del pasado
predichas con igual técnica. Las bases de registros disponibles hoy día permiten realizar
experimentos de predecibilidad con datos pasados y simular situaciones ya conocidas
mediante diversas técnicas, estudiando y comparando los resultados. Es claro que para
estos experimentos la tercera propiedad de la predicción no tiene demasiado interés,
pues la predicción -o mejor, simulación- del pasado no incita a la prisa.
Prácticamente todos los registros interesantes en Meteorología y Climatología se
presentan en forma de series temporales, esto es, los datos están ordenados de forma
correlativa respecto del tiempo. En fórmulas, se trata de trabajar con conjuntos de
valores de la forma {X t
t = 1,2,..., N}.
En esencia, el análisis de datos temporales se reduce a encontrar pautas o patrones que
se repiten más o menos exactamente a lo largo de ellas. Para las series meteorológicas,
por ejemplo, existe una pauta periódica de un año que se corresponde con el periodo de
traslación de la Tierra alrededor del Sol. Para datos tomados a intervalos muy cortos de
tiempo es posible distinguir la pauta diaria de día/noche asociada a la rotación de la
Tierra, y varias más. Todas estas pautas pueden ser sustraídas de la señal original
dejando un resto o residuo como resultado de este primer análisis:

Caos

Teoría del caos es la denominación popular de la rama de las matemáticas, la física y otras ciencias que trata ciertos tipos de sistemas dinámicos muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro; complicando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor determinísticos, es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales
Popularmente, se le llama Teoría del Caos a la rama de las ciencias exactas, principalmente física y matemáticas, que trata sobre comportamientos impredecibles en sistemas dinámicos (sistemas complejos que cambian o evolucionan con el estado del tiempo). La Teoría del Caos plantea que el mundo no sigue un patrón fijo y previsible, sino que se comporta de maneracaótica y que sus procesos y comportamiento dependen, en gran manera, de circunstancias inciertas. Esto plantea que una pequeña variación en el sistema o en un punto del mismo puede provocar que en un lapso de tiempo a futuro éste presente un comportamiento completamente diferente e impredecible.
No es propiamente una teoría, sino un gran campo de investigación abierto que abarca numerosas líneas de pensamiento.

No hay comentarios:

Publicar un comentario